
The first polyamide silk was spun as a type of cord in Schwarza as long ago as 1942. Our processes and patented PA 6 extraction process – EPC PAtraction® – still bear witness today to our decades of experience in the production and processing of polyamides. Our portfolio of services ranges from customized development, planning and projecting through to the realization of turnkey polyamide plants. We can modernize existing plants quickly and cost-effectively, and also assist our customers with feasibility studies and project financing.
As the polymerization reaction does not achieve 100% caprolactam conversion, the polyamide 6 product still has a residual monomer content. After polymerization, this residual monomer is extracted from the polymer, and fed back into the process. The product is fed out of the cooler into the post-condensation device, which works in a nitrogen atmosphere in the absence of oxygen. With the patented EPC-PAtraction® process, an optimal replacement of the material can be achieved by means of nitrogen evolution in combination with a higher pressure.
This significantly reduces the extract content in the granulate, while at the same time enriching the extract water to about 18%, and achieving a considerably more consistent retention time. This minimizes the fluctuations in the extraction
By-products released during polycondensation have to be removed continuously to avoid thermodynamic factors stopping the polycondensation reaction at very low molar masses (Le Chatelier's principle).
In the past, EPC specialists have worked on a number of PA12 projects, for which they have supplied special equipment and plant components for the entire polyamide chain.
Theprocess patented by EPC enables the material to be optimally substituted by means of nitrogen evolution in combination with a higher pressure. This significantly reduces the extract content in the granulate, while at the same time enriching the extract water to about 18%, and achieving a considerably more consistent retention time. This minimizes fluctuations in the extraction concentration.
The extraction process developed by EPC can also be used in existing plants without requiring any large investments or lengthy modernisation times. A special device distributes nitrogen into up to 16 extraction zones in the column. Granulate flows from top to bottom through a packed bed in the device.
The nitrogen and extract water are fed upwards in a counter-flow. The extraction rate depends on the number of trays, which is determined on a case by case basis. The device consists of trays arranged one above the other. Nitrogen is distributed homogeneously through these trays.
Advantages of the solution patented by EPC:
EPC VARIPLANT gives you the following competitive advantages:
EPC PETvantage® is the most cost-effective alternative to investing in a new plant. Depending on the plant configuration, a return on the investment is usually achieved in less than 2 years. In most cases, the main reactors do not need to be replaced. Operational safety, product qualities and production capacities are increased by a multiple, depending on the basic design of the plant and the space available on site.
EPC PETvantage® generates very high profits, mainly through quality assurance and the consequent greater competitiveness:
Commercial and qualitative advantages of EPC insidePET®:
EPC Group has vast experience in the polymers and fibers industry and offers complete engineering packages in delivering world-class polymer/fiber manufacturing plants. For the production of high-quality PETG, PCT, PCTG and PCTA, EPC Group offers its modern CHDM Hydrogenation Technology for the production of top-grade CHDM.
EPC’s highly efficient and flexible continuous hydrogenation process guarantees a feasible production of top quality CHDM. Furthermore, having your own state-of-the-art CHDM production line will ensure a continuous supply of high-grade CHDM as raw material for the manufacturing of high value polyesters resin for the fast growing technical applications in electronics, food and medical packaging, construction components and consumer goods.
In the refining process, the desired additives are added to the raw polymer material in a mixer, and intermingled in the extruder. The melt is then allowed to solidify again in a cooling trough, after which it is cut up in the granulator. With the masterbatch process, EPC enables its customers to change the products their plants produce quickly and keep cleaning costs low. Energy-efficient extruder systems are long lasting, and economical because the waste heat from the extruders is fed back into the entire plant for re-use.
EPC has developed a reactor material based on a special aluminium alloy that is inert under the reaction conditions (no material abrasion), and consequently has no effect on the reaction medium (no uncontrolled reaction behaviour). The material is used in the manufacture of the reactor and in the up and downstream stages involved in the polymerisation reaction. Plant components made of this material do not have to be replaced during the projected lifetime of the plant.
Avoiding deposits building up lengthens production cycles. Less frequent cleaning increases the production capacity and reduces the use of cleansers. The material has strength properties similar to those of steel, and can be worked with conventional machining and forming processes (rolling, bending, grinding, polishing, welding).
The technology
Choosing EPC variPILOT is a good decision. We examine the site, and specify the future location of your pilot plant before we configure it. We plan and construct your specific test plant in accordance with the conditions, the product parameters and your requirements. We deliver your variPILOT plant pre-assembled, so it can be quickly and easily installed and commissioned.